The Azimuth Project
Bridging the greenhouse-gas emissions gap (changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

Bridging the greenhouse-gas emissions gap is a paper on what we can do by 2020 to help hold global warming to 2 °C:

According to the authors, we need to cut CO2 emissions by about 12 gigatonnes/year by 2020 to hold global warming to 2 °C. After the UN climate conference in Copenhagen, many countries made pledges to reduce CO2 emissions… but by 2020 these pledges will cut emissions by at most 6 gigatonnes/year. Even worse, the confirmed value of all these pledges is only 3 gigatonnes/year.

How can we bridge the gap? That’s what this paper is about. The authors list 21 things that cities, large companies and individual citizens could do to cut greenhouse gas emisssions by the equivalent of 10 gigatonnes/year of CO2 by 2020. For each thing on the list, they claim:

  1. there is a concrete starting position from which a significant up-scaling until the year 2020 is possible;

  2. there are significant additional benefits besides a reduction of greenhouse-gas emissions, so people can be driven by self-interest or internal motivation, not external pressure;

  3. there is an organization or combination of organizations that can lead the initiative;

  4. the initiative has the potential to reach an emission reduction by about 0.5 Gt CO2e by 2020.


1. Top 1,000 companies’ emission reductions. Many of the 1,000 largest greenhouse-gas-emitting companies already have greenhouse-gas emission-reduction goals to decrease their energy use and increase their long-term competitiveness, as well as to demonstrate their corporate social responsibility. An association such as the World Business Council for Sustainable Development could lead 30% of the top 1,000 companies to reduce energy-related emissions 10% below business as usual by 2020 and all companies to reduce their non-carbon dioxide greenhouse-gas emissions by 50%. Impact in 2020: up to 0.7 Gt CO2e.

2. Supply-chain emission reductions. Several companies already have social and environmental requirements for their suppliers, which are driven by increased competitiveness, corporate social responsibility and the ability to be a front-runner. An organization such as the Consumer Goods Forum could stimulate 30% of companies to require their supply chains to reduce emissions 10% below business as usual by 2020. Impact in 2020: up to 0.2 Gt CO2e.

3. Green financial institutions. More than 200 financial organizations are already members of the finance initiative of the United Nations Environment Programme (UNEP-FI). They are committed to environmental goals owing to corporate social responsibility, to gain investor certainty and to be placed well in emerging markets. UNEP-FI could lead the 20 largest banks to reduce the carbon footprint of 10% of their assets by 80%. Impact in 2020: up to 0.4 Gt of their assets by 80%. Impact in 2020: up to 0.4 Gt CO2e.

4. Voluntary-offset companies. Many companies are already offsetting their greenhouse-gas emissions, mostly without explicit external pressure. A coalition between an organization with convening power, for example“>UNEP, and offset providers could motivate 20% of the companies in the light industry and commercial sector to calculate their greenhouse-gas emissions, apply emission-reduction measures and offset the remaining emissions (retiring the purchased credits). It is ensured that offset projects really reduce emissions by using the ‘gold standard’ for offset projects or another comparable mechanism. Governments could provide incentives by giving tax credits for offsetting, similar to those commonly given for charitable donations. Impact by 2020: up to 2.0 Gt CO2e.

Other actors

5. Voluntary-offset consumers. A growing number of individuals (especially with high income) already offset their greenhouse-gas emissions, mostly for flights, but also through carbon-neutral products. Environmental NGOs could motivate 10% of the 20% of richest individuals to offset their personal emissions from electricity use, heating and transport at cost to them of around US$200 per year. Impact in 2020: up to 1.6 Gt CO2e.

6. Major cities initiative. Major cities are large emitters of greenhouse gases and many have greenhouse-gas reduction targets. Cities are intrinsically highly motivated to act so as to improve local air quality, attractiveness and local job creation. Groups like the C40 Cities Climate Leadership Group and ICLEI — Local Governments for Sustainability could lead the 40 cities in C40 or an equivalent sample to reduce emissions 20% below business as usual by 2020, building on the thousands of emission-reduction activities already implemented by the C40 cities. Impact in 2020: up to 0.7 Gt CO2e.

7. Subnational governments. Several states in the United States and provinces in Canada have already introduced support mechanisms for renewable energy, emission-trading schemes, carbon taxes and industry regulation. As a result, they expect an increase in local competitiveness, jobs and energy security. Following the example set by states such as California, these ambitious US states and Canadian provinces could accept an emission-reduction target of 15–20% below business as usual by 2020, as some states already have. Impact in 2020: up to 0.6 Gt CO2e.

Energy efficiency

8. Building heating and cooling. New buildings, and increasingly existing buildings, are designed to be extremely energy efficient to realize net savings and increase comfort. The UN Secretary General’s Sustainable Energy for All Initiative could bring together the relevant players to realize 30% of the full reduction potential for 2020. Impact in 2020: up to 0.6 Gt CO2e.

9. Ban of incandescent lamps. Many countries already have phase-out schedules for incandescent lamps as it provides net savings in the long term. The en.lighten initiative of UNEP and the Global Environment Facility already has a target to globally ban incandescent lamps by 2016. Impact in 2020: up to 0.2 Gt CO2e.

10. Electric appliances. Many international labelling schemes and standards already exist for energy efficiency of appliances, as efficient appliances usually give net savings in the long term. The Collaborative Labeling and Appliance Standards Program or the Super-efficient Equipment and Appliance Deployment Initiative could drive use of the most energy-efficient appliances on the market. Impact in 2020: up to 0.6 Gt CO2e.

11. Cars and trucks. All car and truck manufacturers put emphasis on developing vehicles that are more efficient. This fosters innovation and increases their long-term competitive position. The emissions of new cars in Europe fell by almost 20% in the past decade. A coalition of manufacturers and NGOs joined by the UNEP Partnership for Clean Fuels and Vehicles could agree to save one additional liter per 100 km globally by 2020 for cars, and equivalent reductions for trucks. Impact in 2020: up to 0.7 Gt CO2e.

Energy supply

12. Boost solar photovoltaic energy. Prices of solar photovoltaic systems have come down rapidly in recent years, and installed capacity has increased much faster than expected. It created a new industry, an export market and local value added through, for example, roof installations. A coalition of progressive governments and producers could remove barriers by introducing good grid access and net metering rules, paving the way to add another 1,600 GW by 2020 (growth consistent with recent years). Impact in 2020: up to 1.4 Gt CO2e.

13. Wind energy. Cost levels for wind energy have come down dramatically, making wind economically competitive with fossil-fuel-based power generation in many cases. The Global Wind Energy Council could foster the global introduction of arrangements that lead to risk reduction for investments in wind energy, with, for example, grid access and guarantees. This could lead to an installation of 1,070 GW by 2020, which is 650 GW over a reference scenario. Impact in 2020: up to 1.2 Gt CO2e.

14. Access to energy through low-emission options. Strong calls and actions are already underway to provide electricity access to 1.4 billion people who are at present without and fulfill development goals. The UN Secretary General’s Sustainable Energy for All Initiative could ensure that all people without access to electricity get access through low-emission options. Impact in 2020: up to 0.4 Gt CO2e.

15. Phasing out subsidies for fossil fuels. This highly recognized option to reduce emissions would improve investment in clean energy, provide other environmental, health and security benefits, and generate income. The International Energy Agency could work with countries to phase out half of all fossil-fuel subsidies. Impact in 2020: up to 0.9 Gt CO2e.

Special sectors

16. International aviation and maritime transport. The aviation and shipping industries are seriously considering efficiency measures and biofuels to increase their competitive advantage. Leading aircraft and ship manufacturers could agree to design their vehicles to capture half of the technical mitigation potential. Impact in 2020: up to 0.2 Gt CO2e.

17. Fluorinated gases (hydrofluorocarbons, perflourocarbons, SF6). Recent industry-led initiatives are already underway to reduce emissions of these gases originating from refrigeration, air-conditioning and industrial processes. Industry associations, such as Refrigerants, Naturally!, could work towards meeting half of the technical mitigation potential. Impact in 2020: up to 0.3 Gt CO2e.

18. Reduce deforestation. Some countries have already shown that it is strongly possible to reduce deforestation with an integrated approach that eliminates the drivers of deforestation. This has benefits for local air pollution and biodiversity, and can support the local population. Led by an individual with convening power, for example, the United Kingdom’s Prince of Wales or the UN Secretary General, such approaches could be rolled out to all the major countries with high deforestation emissions, halving global deforestation by 2020. Impact in 2020: up to 1.8 Gt CO2e.

19. Agriculture. Options to reduce emissions from agriculture often increase efficiency. The International Federation of Agricultural Producers could help to realize 30% of the technical mitigation potential. (Well, at least it could before it collapsed, after this paper was written.) Impact in 2020: up to 0.8 Gt CO2e.

Air pollutants

20. Enhanced reduction of air pollutants. Reduction of classic air pollutants including black carbon has been pursued for years owing to positive impacts on health and local air quality. UNEP’s Climate and Clean Air Coalition To Reduce Short-Lived Climate Pollutants already has significant political momentum and could realize half of the technical mitigation potential. Impact in 2020: a reduction in radiative forcing impact equivalent to an emission reduction of greenhouse gases in the order of 1 Gt CO2e, but outside of the definition of the gap.

21. Efficient cook-stoves. Cooking in rural areas is a source of carbon dioxide emissions. Furthermore, there are emissions of black carbon, which also leads to global warming. Replacing these cook-stoves would also significantly increase local air quality and reduce pressure on forests from fuel-wood demand. A global development organization such as the UN Development Programme could take the lead in scaling-up the many already existing programs to eventually replace half of the existing cook-stoves. Impact in 2020: a reduction in radiative forcing impact equivalent to an emission reduction of greenhouse gases of up to 0.6 Gt CO2e, included in the effect of the above initiative and outside of the definition of the gap.

For more

For more, see the supplementary materials to this paper, and also

category: action, carbon